

National Aeronautics and
Space Administration

NASA Technical Memorandum 104259

Experience With Ada on the F-18
High Alpha Research Vehicle
Flight Test Program

Victoria A. Regenie, Michael Earls, Jeanette Le, and
Michael Thomson

October 1992

National Aeronautics and
Space Administration

Dryden Flight Research Facility

Edwards, California 93523-0273

1992

NASA Technical Memorandum 104259

Experience With Ada on the F-18
High Alpha Research Vehicle
Flight Test Program

Victoria A. Regenia, Michael Earls, and Jeanette Le
NASA Dryden Flight Research Facility, Edwards, California

Michael Thomson
PRC Inc., Edwards, California

Experience With Ada on the F-18 High Alpha Research Vehicle
Flight Test Program

Victoria A. Regenie, Michael Earls, and Jeanette Le
NASA Dryden Flight Research Facility

Edwards, California

Michael Thomson
PRC Inc.

Edwards, California
Abstract

Considerable experience has been acquired with Ada
at the NASA Dryden Flight Research Facility during
the on-going High Alpha Technology Program. In this
program, an F-18 aircraft has been highly modified by
the addition of thrust-vectoring vanes to the airframe.
In addition, substantial alteration was made in the
original quadruplex flight control system. The result
is the High Alpha Research Vehicle. An additional re-
search flight control computer was incorporated in each
of the four channels. Software for the research flight
control computer was written in Ada. To date, six re-
leases of this software have been flown. This paper pro-
vides a detailed description of the modifications to the
research flight control system. Efficient ground-testing
of the software was accomplished by using simulations
that used the Ada for portions of their software. These
simulations are also described. Modifying and transfer-
ring the Ada flight software to the software simulation
configuration has allowed evaluation of this language.
This paper also discusses such significant issues in us-
ing Ada as portability, modifiability, and testability as
well as documentation requirements.

Nomenclature

A/D analog-to-digital

D/A digital-to-analog

DDI digital display indicator

DPRAM dual port random-access memory

EEPROM electrically erasable programmable read-
only memory

FAST F-18 FCS automated software testing

FCS flight control system

FORTRAN FORmula TRANslation

GE General Electric, Lynn, Massachusetts

HARV High Alpha Research Vehicle

HUD head-up display

JOVIAL Jules’ Own Version of the International
Algorithmetic Language

LEF leading-edge flaps

McAir McDonnell Aircraft Division, McDonnell
Douglas Corporation, St. Louis,
Missouri

MDTOT parameter identifier

MIL-STD military standard

OBES on-board excitation system

PASCAL Philips Automatic Sequence CALculator

RAM random-access memory

RFCS research flight control system

ROM read-only memory

TEF trailing-edge flaps

UART universal asynchronous receiver-
transmitter

UMN universal memory network

UVPROM ultraviolet programmable read-only
memory

Introduction

Higher order languages have not been extensively
used to develop flight control systems because of the
lack of speed and capacity in the flight control comput-
ers. With the large improvements in computer speed,
or throughput, and in memory, use of higher order lan-
guages is now practical. Examples of higher order lan-
guages used for aircraft include PASCAL (Philips Au-
tomatic Sequence CALculator), JOVIAL (Jules’ Own
Version of the International Algorithmetic Language),
and Ada.

Because the United States military selected Ada
for use as the common language, more aircraft will
be flown using this software. Thus, NASA Dryden
Flight Research Facility (DFRF) personnel must be-
come familiar with the language and its capabilities.

An F-18 testbed aircraft, the High Alpha Research Ve-
hicle (HARV), offered an opportunity to acquire experi-
ence with the use of Ada for flight control applications.1

The aircraft was built by the McDonnell Aircraft
Division (McAir), McDonnell Douglas Corporation, St.
Louis, Missouri, and the Northrop Corporation, New-
bury Park, California.

This paper describes the DFRF experience with Ada
and details the observed advantages and disadvantages
to using this language. The conclusions reached here
through the use of Ada in the real-time control envi-
ronment are applicable to other control areas as well.
Many real-time control systems using Ada to control
complex systems would be expected to have similar
experiences.

Research Flight Control System
Description

The following subsections describe the hardware,
control laws, and software of the system in which Ada
was used:

Hardware

The HARV is a modified preproduction F-18 aircraft
equipped with spin chute and emergency hydraulic and
electrical systems. These modifications include a sim-
ple, low cost, thrust-vectoring system. This installa-
tion required modifications to the flight control system
and mission computer.2

The basic F-18 flight control system consists of
quadruplex redundant GE 701E (General Electric,
Lynn, Massachusetts) computers and was modified for
HARV by adding an analog interface to the thrust-
vectoring vane actuators and a research flight control
system (RFCS). Figure 1 shows the F-18 HARV com-
puter architecture. The analog input card and RFCS
were added to spare card slots in the basic flight control
computer. This basic flight control computer main-
tains control of the aircraft; controls input, output, or
both processing functions; communicates with the F-18
mission computer for outer loop control; and displays
information through a military standard (MIL-STD)
1553 data bus. The RFCS was added to provide a
flexible system for control law research. Ada was cho-
sen as the programming language for the RFCS.

The RFCS central processing unit is a MIL-STD-
1750A processor with a 20-MHz clock slaved to the
GE 701E computer (Fig. 1). The RFCS contains
32,000 words of electrically erasable programmable
read-only memory (EEPROM), 16,000 words of ultra-
violet programmable read-only memory (UVPROM),
2,000 words of random-access memory (RAM), and
2,000 words of dual port RAM (DPRAM). The RFCS
communicates to the basic flight control computer

through the DPRAM. Hence, RFCS may be called an
embedded control system. It, however, has no direct
control of the aircraft. The aircraft is under RFCS
control only during the research phases of a HARV
flight. First, the RFCS is armed or enabled by a cock-
pit switch. Then, it is engaged or activated through
use of a switch on the control stick. The RFCS is man-
ually disengaged via the arm switch or a control-stick-
mounted paddle switch. Autodisengagement occurs as
a result of internally defined limits on rates, accelera-
tions, engine sensors, and airdata sensors.

Control Laws

The longitudinal control laws contain an angle-
of-attack command system that uses angle-of-
attack, pitch rate, and inertial coupling feedbacks
(Fig. 2).3 The lateral–directional control laws contain
a feet-on-the-floor stability axis roll rate command sys-
tem (Fig. 3). This system provides the control for the
roll and yaw axes.3 The lateral–directional system uses
roll, yaw, and sideslip rates as well as lateral accelera-
tion and inertial coupling as feedback signals.

Figure 4 shows a simplified diagram of the thrust
vane mixer section. This section converts the com-
mand pitch and yaw-vectoring moments computed in
the longitudinal and lateral–directional control laws
into vane commands. The mixer also uses estimated
thrust and current vane positions to calculate new vane
commands. The RFCS gross thrust estimator uses noz-
zle pressure ratio, nozzle exit radius, power level angle,
and static pressure to calculate gross thrust.

Software

The RFCS software is programmed in Ada and
was developed on a separate minicomputer system
and cross-compiled to the MIL-STD-1750A processor.
The software is loaded into the flight control com-
puters through an RS232 serial port using a personal
computer.

The original RFCS software was designed and tested
by McDonnell Douglas Corporation under a NASA
contract. None of the real-time kernel capabilities or el-
ements available with Ada, such as taskings, priorities,
terminations, and exceptions, were used for this sys-
tem because of concerns about timing.4–6 The RFCS
software consists mainly of the control laws with a few
redundancy management functions. Because it can al-
ways downmode safely to the F-18 basic flight con-
trol system, the RFCS is not considered flight critical.
Choice of a language impacts neither the number of re-
dundancy management functions nor their complexity.
Redundancy management functions of the RFCS in-
clude such elements as reasonability checks and engage
logic.
2

The RFCS software consists of approximately 78
Ada specifications, which define the interface to the
outside world, and 13 Ada bodies, which give the de-
tails of the program. These specifications and bodies
consist of approximately 130 modules, 175 procedures,
5 functions, and 4,600 lines of code (16,302 sixteen-
bit words of EEPROM and 1,699 words of RAM).
The RFCS software can be divided into six func-
tional areas. These areas include input-output func-
tions, disarm-disengage logic, longitudinal control laws,
lateral–directional control laws, thrust vane mixer, and
gross thrust estimator. Figure 5 shows these functional
areas. Timing estimates for the current RFCS software
indicate less than 85 percent worst case throughput and
50 percent memory use.

The input-output functional area transfers data
through DPRAM, converts these data to and from a
fixed point machine (the basic flight control system) to
the RFCS floating point format, and checks for data
validity. The disarm-disengage logic functional area
determines whether the RFCS should arm or engage.
This functional area includes such elements as envelope
limits and reasonability checks on control law feedbacks
and RFCS outputs.

Simulations
Three configurations of the real-time HARV simula-

tion are used: an all-software, a hardware-in-the-loop,
and an ironbird. Figures 6, 7, and 8 show that these
configurations use many of the same elements. Detailed
descriptions of these configurations are provided next.

All-Software Simulation

Written in FORmula TRANslation (FORTRAN)
and Ada, the all-software simulation is used for en-
gineering development of control laws, for pilot train-
ing, and for flight test planning. Figure 6 shows the
elements of the all-software simulation. The aircraft
model is performed in the simulation computer and in-
cludes the basic flight control laws as well as the aero-
dynamic, propulsion, thrust-vectoring, sensor, and ac-
tuator models. The only element of the all-software
simulation coded in Ada is the RFCS control laws.
These control laws are in the RFCS control law com-
puter, a Unix-based workstation. Both the simula-
tion computer and RFCS control law computer cycle
at 80 Hz. The simulation cockpit includes the flight
digital display indicators (DDI) and a head-up display
(HUD) along with the simulated instrumentation and
the pilot controls. Other flight hardware include mis-
sion computers and communication system control. An
interface between the research flight control laws and
the basic flight control laws in the simulation emulates
the actual flight system interface as closely as possi-
ble. Four MIL-STD-1553 multiplex buses are included

in the simulation. Three are for communication be-
tween the simulated and flight avionics. One is for an
aircraft model display communication path. In addi-
tion, the three MIL-STD-1553 buses model the three
HARV MIL-STD-1553 buses.

Hardware-in-the-Loop Simulation

Hardware-in-the-loop, the most frequently used sim-
ulation configuration, is the primary tool for developing
and testing software. This configuration is also used for
pilot training, flight test planning, and, to a lesser de-
gree, engineering development. In addition, this config-
uration is extensively used for failure modes and effects
testing and for control law validation. Actual flight
control computers replace the control laws modeled in
the simulation computer and the workstation. Figure 7
shows the hardware-in-the-loop simulation. Actuator
models are also moved from the simulation computer
and modeled using analog models. All other elements
of the all-software simulation remain the same.

Ironbird Simulation

Figure 8 shows the ironbird simulation. As a final
check for the system configuration, this simulation con-
figuration is used to measure the closed-loop response
of the control laws and to verify actuator models. A
decommissioned F-18 airplane with hydraulic lines is
used. With the exception of the leading- and trailing-
edge flaps (LEF and TEF), the ironbird simulation re-
places the analog actuator models with the actual flight
actuators.

Compilers

Two Ada compilers were used: one for the RFCS
software and the other for the simulation software.
The cross-compiler used for the RFCS is a TLD Sys-
tems, Limited, Torrance, California, compiler hosted
on a minicomputer. This compiler conforms with MIL-
STD-1815A-1983 requirements. For the simulation
software, a SunPro (Sun Microsystems, Incorporated,
Mountainview, California) Ada language compiler is
used. This compiler also conforms to MIL-STD-1815A-
1983 requirements. No evaluation was done on the dif-
ferent compilers, and only obvious differences, such as
one compiler flagging errors that the other compiler
missed, were noted.

Software Modifications

Two major areas of software modifications are dis-
cussed in this section. These areas include modifica-
tions to the flight software and adaptations of the flight
software to the simulation. McAir developed the RFCS
software in a simulation and then transferred it to the
flight hardware. The DFRF tested the software in the
3

hardware-in-the-loop simulation and later added the
RFCS software to the all-software simulation.

Flight Software Modifications

The RFCS software delivered from McAir to DFRF
was not tested in a closed-loop system but was verified
by McAir in an open-loop environment on the flight
hardware. The contract stated that NASA would com-
plete the closed-loop validation testing. The compiler
that McAir and DFRF used to develop the Ada soft-
ware includes a profiling tool that allows timing esti-
mates to be generated for the target computer. Results
of the timing estimates made by McAir using this tool
significantly underestimated the actual execution time
in the MIL-STD-1750A computer. McAir modified the
RFCS software during the open-loop tests to improve
its throughput. When the RFCS was delivered, it was
installed in the hardware-in-the-loop simulation for val-
idation testing. During the hardware-in-the-loop vali-
dation testing, RFCS exceeded the allocated cycle time
for one unusual set of conditions. The code required
modification to allow some throughput margin.

The following list shows the changes made to the
RFCS software to date. Several functions were changed
from 80- to 40- and 20-Hz functions (items 1 and 2 in
list). At the same time, the code was reviewed to find
additional changes to increase the throughput margin
(item 3 in list).

1. RFCS multirate tasking

2. Modify order of rate structure

3. RFCS Ada code cleanup

4. Code reconfiguration

5. Change mixer-predictor constant

6. Thrust estimation modification

7. Betadot sign change miscompare

8. On-board excitation system (OBES)

9. RFCS 701E fader gain

10. Fix OBES frequency sweeps by overlay*

11. Fix OBES frequency sweeps and cleanup syntax

12. Static pressure with weight on wheels

13. Fix RFCS flag word outside envelope indication

14. OBES requirements

15.
Incorrect differential stabilator, TEF, and LEF
computations

*Indicates an overlay generated.

16. MDTOT sign change

17. OBES cleanup

18. Persistence on betadot and angle of attack

19. Engine parameters channel 1/3 miscompare

20. Change instrumentation scaling of error signal

21. Update configuration identification to version 24.0

22. Sideslip rate delta tolerance—overlay*

23. Sideslip rate delta tolerance—compile

24. Add test variables for FAST command limit tests

25. Replace message 8 RFCS parameters

26.
Change scales of angles of attack and sideslip in
RFCS

27.
Change parameters for angle of attack and
inertial navigation system angle of attack scaling
to ±180°

28. OBES aileron rate limit

29.
Add component of alphadot and betadot in
mission computer

30. Parameter identification OBES

31. Move RFCS message 17 code

32. Thrust estimator

33. Enable RFCS go

34. Angle-of-attack filter coefficient

35. Message 17 parameter change

36. Message 8 RFCS modification

37.
RFCS persistence counter for channel 1/3
miscompare

38.
Change constants in pitch and roll trim
processing

39. RFCS scaling for message 8 instrumentation

40.
Static pressure with weight on wheels by
overlay*

41. Downlink OBES signal

42.
Change configuration identification to version
22.0 in RFCS software

43. Version 22.0—message 8

44. Change instrumentation error signal by overlay*

45. Pitch rate lead and gain changes
4

*Indicates an overlay generated.

The original RFCS control law software was devel-
oped as two parts: longitudinal and lateral–directional.
While the delivered code was modularized, some func-
tions were distributed through several modules. Air-
data was the principal segment calculated in more than
one module and was processed in the input-output
and in the lateral–directional control law sections. To
allow completion of updates to one functional group
without affecting another functional group, the soft-
ware was modified to include all airdata functions in
input-output (item 4 in list). The update rate for
airdata-dependent gain scheduling was at 80 Hz, but
airdata was updated at 20 Hz. Consequently to in-
crease the throughput margin, the code was modified
to update the airdata-dependent gains at 20 Hz. Un-
less better profiling tools are developed, these problems
in throughput margin will continue to be found in final
hardware-in-the-loop testing.

During the flight program, modifications were made
to correct problems or make improvements. The ma-
jority of these changes involved a simple constant or a
couple of line changes. A few were more extensive and
included new capabilities. An OBES was incorporated
in RFCS to generate commands to the surfaces using
a function generator for sine waves and doublets.

Simulation Software Modifications

The RFCS Ada code was ported to the software sim-
ulation. This code was developed on a minicomputer
system and ported to a computer where it could be
validated using the real-time, all-software simulation.

Because the simulations were developed on the sim-
ulation computer, the Ada RFCS code was initially
ported to this computer where it could interface with
the residing simulation through shared memory. The
simulation computer was incapable of supporting the
Ada code in the time required. The code was then
ported to a Unix-based workstation RFCS control law
computer with a different Ada compiler. Here, the
RFCS code communicated with the simulation com-
puter through the universal memory network (UMN)
instead of shared memory.7 Real-time performance
speed improved significantly on this computer. This
performance improvement was the result of several fac-
tors. These factors included the limited time avail-
able on the simulation computer and the improved Ada
compiler available on the RFCS control law computer.

Additional code was added to set-up a means of ex-
changing data between the Ada RFCS code and the
real-time simulation. Because of timing restrictions,
the calling order of the routines in the executive RFCS
program was also changed. The hardware-in-the-loop
code’s executive operates at a 160-Hz frame rate over-
all. The individual routines are called at various rates.
Originally, two 80-Hz tasks ran alternately on an even
or an odd frame. One task handled the longitudinal
control laws, while the other frame handled the lateral–
directional control laws. The Ada on the RFCS control
law computer was unable to support the 160-Hz sched-
ule without time overruns. As a result, the even-odd-
frame arrangement was replaced by a new calling se-
quence. This sequence first calls the longitudinal mode
calculations and then calls the lateral–directional mode
calculations. Otherwise, the source code developed on
the minicomputer system is easily transferred to the
RFCS control law computer.

Significant Issues
This section describes major issues relating to Ada

and its use in real-time embedded control systems.
These issues include porting, documenting, modifying,
and testing the software. In addition, software devel-
opment is discussed.

Portability

The RFCS Ada code was fairly portable. This code
was transferred from the MIL-STD-1750A processor to
the simulation computer to the control law computer.
The majority of modifications needed for Ada to run
in the simulation were changes to account for differ-
ences in the flight control and simulation systems. Be-
cause the hardware-in-the-loop RFCS source code re-
sides on the minicomputer system and the all-software
code is on the Unix-based workstation, two Ada com-
pilers were used to achieve optimal performance on the
individual machines. Use of two compilers can also

46. Update configuration identification to version
23.0

47. Message 8 word 20-bit toggle

48. RFCS thrust failures

49. Sideslip rate delta on instrumentation

50. Angle-of-attack rate gain fix

51. Update fade rate

52. Angle-of-attack scaling and inertial
components—overlay*

53. Update configuration identification to version
25.0

54. Add test variables for FAST command limit tests

55. Parameter identification OBES modification

56. Update configuration identification to version
26.0

57. OBES command limiting

58. Collective trailing-edge flap test command
5

result in differences if one compiler is more nearly accu-
rate than the other. For example, the Unix-based com-
piler would flag errors that the minicomputer compiler
would accept. The two compilers provided an extra
test for errors in the Ada software.

Documentability

An often mentioned feature of Ada is the fact that it
is a self-documenting code. Although very easy to read,
Ada is self-documenting only on a detailed level; that
is, Ada is more similar to self-commenting. The self-
documenting feature of Ada does not remove the need
for developing specifications and system documenta-
tion. Any system requires a specification for the soft-
ware to be developed against; otherwise, errors prop-
agate throughout the system. Use of a higher order
language, such as Ada, makes it easier to design and
code a system without developing specifications. As
with any other programming language, such program
specifications as specification block diagrams, program
requirements, software design specifications, and pro-
gram flowcharts are needed to give an overall picture
of the entire system.

Modifiability

Use of Ada or any higher order language simplifies all
but the most difficult software updates. The compiler
can show the assembly-level code along with the Ada,
which helps when trying to understand the operation
of the software. An assembly-level listing is necessary
when the software is not performing as expected, and
debugging is required. The assembly-level listing and
the memory map are used to examine the system mem-
ory and to assist in locating errors. This technique
was used several times during the system integration
stage. The Ada code proved fairly easy to modify, but
assembly-level modifications were still used.

Updates to the RFCS software are done either by
overlay or by recompiling. To change constants, an
overlay is performed. For an overlay, no source code
is changed. The majority of overlays are then added
to later software versions by modifying the source code
and recompiling. Load files, the machine code in hex-
adecimal that is loaded onto the flight control comput-
ers, are updated on the minicomputer system. Once
completed, the newly overlaid code is downloaded to
the flight control computers. Because a recompile is
not performed, a bit-for-bit comparison can be done to
verify any memory changes.

For all other changes, the program is recompiled.
This process involves changing the source code to meet
the new requirements. Once the changes have been
added to the code, a compilation is performed. Then,
the new software is downloaded to the flight control
computers. Software changes made by recompiling

require significantly more testing than those done by
overlay. Because a bit-for-bit comparison cannot be
performed, it cannot be assumed that the source code
updates did not affect any other software functionality.

One disadvantage in using Ada is that changes in
the calling sequence, addition of new routines to the
code, or both require changes in the compilation order
of the dependent routines. The proper order or se-
quence must be established to ensure that any routine
which depends on another routine is compiled before
the calling routine is compiled. This ordering process
can become a difficult task when major changes in the
calling sequence are required.

Another disadvantage of higher order languages ver-
sus assembly languages is that software overlays cannot
be inserted on-line. With assembly language, a logic
overlay can be inserted into the source code and re-
assembled. Overlays can be written to branch to a pre-
determined patch area in read-only memory (ROM),
execute the new code, and return to the point of ori-
gin. This type of change requires less testing than a
complete reassembly because a bit-for-bit comparison
can be performed.

Testability
The language used to implement the software has

no impact on the testing requirements. The level of
testing required is determined by the criticality of the
system. Obviously, flight-critical systems require more
testing than those systems that are less essential. Re-
gardless of the programming language used, verifica-
tion and validation tests are required to flight qualify a
new software release. Verification is the process of de-
termining that the software performs as specified. This
process is accomplished by devising individual tests for
each specified software task, conducting the test, and
observing that the task was completed according to the
specification. Validation, the broader task, seeks to de-
termine if the system of which the software is a part
performs adequately to fulfill the flight requirements.
Open- and closed-loop failure modes and effects tests
are among the techniques used in software validation.
In these tests, failures are artificially induced, and a
correct system response to those failures is verified.

Verification. When a higher order language is used,
the compiler and linker must provide outputs which
give the tester the information required to understand
and verify the code. This information includes a list-
ing of the assembly language code generated by the
compiler and a memory map showing the locations of
all modules, constants, and variables. The ability to
complete the testing without modifying in any way the
code under test is highly desirable. If the required test
interfaces exist, then the locations of the input and out-
put variables provide the interfaces to the code under
6

test. The tester may inject and monitor inputs and
outputs to determine if the code performs as specified.
If modification of the software is necessary to allow
the tests to be performed, then a test patch is written.

Digital flight control systems seldom have the test in-
terfaces required to perform complete verification test-
ing without modification of the code under test. Of
course in many instances, the change being verified
involves inputs and outputs which are available dur-
ing normal system operation. Test patches are not re-
quired in these cases. When test patches are required
for higher order languages, these patches are coded in
assembly language using areas of program and variable
memory that are not used by the compiled software.
The software under test is minimally impacted.

Validation. Software is validated in conjunction
with the system of which it is a part. In the case of
the RFCS, validation is accomplished on the HARV
hardware-in-the-loop simulation. Time histories, fail-
ure modes, and effects tests are performed while the
simulated aircraft is flying closed-loop. Depending on
the interfaces available, occasionally test patches are
needed to simulate system failures which cannot be in-
duced in any other way.

Software Development

Development of real-time code requires an under-
standing of the requirements and limitations of mem-
ory and time. Real-time software generally requires
more time than is readily available; therefore, care
must be taken in developing the code. Use of a higher
order language makes it more difficult to control the
timing directly. The compiler generates the code and,
even if optimized, may not produce the most time-
efficient code. As discussed in the Compiler section
and in the Portability subsection, one of the two com-
pilers used by HARV detects more errors than the
other. Although not required, use of two compilers
provides a good check-and-balance scheme for any soft-
ware development.

The use of two or more compilers is not required and
was only used on this program to facilitate the transfer
of the Ada software to the all-software simulation. The
majority of the Ada software in the all-software simula-
tion is identical to the flight software. Using the same
software in the simulation and in the flight software
saves time when transferring the software between sys-
tems. Software implementation differences between the
hardware-in-the-loop and all-software simulations are
also minimized.

The developer also needs to be aware of any mi-
crocode errors within the target processor. Many com-
piler developers work closely with processor manu-
facturers. Such cooperation allows the developers to

correct microcode errors within the compiler, but not
all errors will be necessarily corrected. Validated Ada
compilers can also have errors. The assembly-code
listing also gives the implementer the information re-
quired to deal with possible compiler errors and with
known microcode errors in the target processor hard-
ware. Knowledge of the system is still necessary for the
development of software for real-time systems.

Concluding Remarks
The NASA Dryden Flight Research Facility experi-

ence with using Ada software for the F-18 High Alpha
Research Vehicle has been positive. Although the Ada
software developed was not for an extremely complex
system, it is representative of most uses. Compiled
Ada code can be used in a flight-critical system. The
conclusions reached in this paper are not effected by
the lack of a complex redundancy management or of a
flight-critical system.

Positive conclusions reached concerning Ada are
listed next. Ada is

• Portable—Ada was transferred among three com-
puters using different compilers. The changes
made to the transported code were to account for
system changes.

• Documentable—For commenting purposes, this
easy-to-read code is self-documenting. On the
other hand, the self-documenting feature of Ada
does not remove the requirement for system-level
documentation or for a specification before coding.

• Modifiable—Ada is easy to modify, but it is still
easier to make simple constant changes without
recompiling. Individual changes in the code that
are of major significance and numerous changes
that are of less significance are easy to accomplish
in Ada.

• Testable—Ada is no more difficult to test than any
other language. The criticality of the system—
not the language used to program the system—
defines the testing requirements. Any system can
be coded in Ada. For example, a system with com-
plex redundancy management functions can easily
be written in Ada, and the testing requirements
would not change. A flight-critical system can eas-
ily use Ada, and the testing requirements would be
the same as for other flight-critical systems.

Negative factors identified were not really Ada spe-
cific; that is, these factors are also found in other higher
order languages. If a system does not follow standard
software design practices, then problems will occur.
Software and system specifications must be developed
7

before the software implementations. Compilers, even
validated Ada compilers, can have errors. As a result,
compiled software must be tested before use.

References
1 Regenie, Victoria, Donald Gatlin, Robert Kempel,

and Neil Matheny, “The F-18 High Alpha Research
Vehicle: A High-Angle-of-Attack Testbed Aircraft,”
AIAA-92-4121, Aug. 1992. (Also available as NASA
TM-104253, 1992.)

2 Chacon, Vince, Joseph W. Pahle, and Victoria A.
Regenie, Validation of the F-18 High Alpha Research
Vehicle Flight Control and Avionics Systems Modifica-
tions, NASA TM-101723, 1990.

3 Pahle, Joseph W., Bruce Powers, Victoria Regenie,
Vince Chacon, Steve Degroote, and Steven Murnyak,
Research Flight-Control System Development for
the F-18 High Alpha Research Vehicle, NASA
TM-104232, 1991.

4 Honeywell Inc., Military Avionics Division,
DIGTAC III—Advanced Fault Tolerant Control Tech-
niques: Software Final Report, St. Louis Park, MN,
Sept. 1990.

5 Sodano, Nancy M., Ada Realtime Performance As-
sessment Internal Research and Development Task: Fi-
nal Report, CSDL–C–5808, Charles Stark Draper Lab-
oratory, Inc., Cambridge, MA, Oct. 1985.

6 Software Productivity Consortium, Ada Quality
and Style: Guidelines for Professional Programmers,
SPC–91061–N, version 02.00.02, Herndon, VA, 1991.

7 Reinwald, Carl, “Universal Memory Network
Overview,” Universal Memory Network—Standalone
Memory Interface (SMI–32) System Technical Manual,
TM/SMI32/001/00, Computer Sciences Corporation,
Lompoc, CA, June 1,1992, pp. D–2 to D–12.
8

����
��
�

��
��
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
���

M
IL

-S
T

D
-1

75
0A

 R
F

C
S

 c
o

m
p

u
te

r

92
06

42

G
E

 7
01

E
 c

o
m

p
u

te
r

P
ri

m
ar

y
co

n
tr

o
l l

aw

S
ec

o
n

d
ar

y
co

n
tr

o
l l

aw

A
ct

u
at

o
r

si
g

n
al

m

an
ag

em
en

t

In
p

u
t

si
g

n
al

m

an
ag

em
en

t

O
u

tp
u

t
si

g
n

al

an
d

fa

d
er

lo

g
ic

D
ig

it
al

in

p
u

t
M

IL
-S

T
D

-
15

53
 b

u
s

A
n

al
o

g

in
p

u
ts

A
/D

D
/A

D
/A

S
u

rf
ac

e
ac

tu
at

o
r

an
al

o
g

in

te
rf

ac
e

V
an

e
ac

tu
at

o
r

an
al

o
g

in

te
rf

ac
e

D
P

R
A

M

R
F

C
S

 c
o

n
tr

o
l l

aw

E
E

P
R

O
M

E
xe

cu
ti

ve

U
V

P
R

O
M

U
A

R
T

R
S

23
2

F
lig

h
t

co
n

tr
o

l
co

m
p

u
te

r
m

o
d

if
ic

at
io

n
s

Fi
g.

 1
 T

he
 G

E
 7

01
E

 a
nd

 M
IL

-S
T

D
-1

75
0A

 fl
ig

ht
 c

on
tr

ol
 c

om
pu

te
rs

.

9

An
gl

e-
of

-a
tta

ck
 b

ia
s

Pi
tc

h
st

ic
k,

in

.

Pi
tc

h
tr

im

St
ic

k
co

m
pe

ns
at

io
n

(d
ea

db
an

d,
 g

ra
di

en
t,

 g
ai

n)
–

+
Co

lle
ct

iv
e

st
ab

ila
to

r
co

m
m

an
d,

de

g

Co
m

m
an

d
ga

in

In
te

gr
al

ga

in

O
pe

n-
lo

op

co
m

pe
ns

at
io

n

Li
m

ite
d

in
te

gr
at

or

+
Pr

op
or

t
ga

in
+

+

+

Li
m

ite
d

lo
w

 p
as

s
In

er
tia

l
ga

in

Ya
w

 ra
te

R
ol

l
ra

te

+

Pi
tc

h
ve

ct
or

in
g

co
m

m
an

d,

de
g

+
+

Pi
tc

h
ra

te
,

de
g/

se
c

Pi
tc

h
ra

te
 c

om
pe

ns
at

io
n

(h
ig

h
pa

ss
, l

ea
d-

la
g,

st

ru
ct

ur
al

 n
ot

ch
, a

nd
 g

ai
n)

An
gl

e-
of

-a
tta

ck
 ra

te
 p

at
h

(h
ig

h
pa

ss
 a

nd
 ra

te
 g

ai
n)

An
gl

e-
of

-a
tta

ck
 ra

te
 p

at
h

(l
ow

 p
as

s
an

d
ra

te
 g

ai
n)

Le
ad

in
g-

ed
ge

 fl
ap

fil

te
r a

nd
 g

ai
n

Tr
ai

lin
g-

ed
ge

 fl
ap

fil

te
r a

nd
 g

ai
n

An
gl

e
of

at

ta
ck

,
de

g

+ +

Le
ad

in
g-

ed
ge

fla

p
co

m
m

an
d,

de

g

Tr
ai

lin
g-

ed
ge

fla

p
co

m
m

an
d,

de

g
92

06
19

Fi
g.

 2
 S

im
pl

ifi
ed

 r
es

ea
rc

h
fli

gh
t c

on
tr

ol
 s

ys
te

m
 lo

ng
itu

di
na

l c
on

tr
ol

 la
w

s
(a

ng
le

-o
f-

at
ta

ck
).

An
gl

e-
of

-a
tta

ck
 p

at
h

(l
ow

 p
as

s
an

d
ga

in
)

10

La
te

ra
l a

cc
el

er
at

io
n

fil
te

ri
ng

R
ol

l c
om

m
an

d
sh

ap
in

g

Ya
w

 c
om

m
an

d
sh

ap
in

g

R
ol

l r
at

e
fil

te
ri

ng

an
d

co
m

pe
ns

at
io

n

Ya
w

 ra
te

 fi
lte

ri
ng

an

d
co

m
pe

ns
at

io
n

R
ol

l a
xi

s
co

m
m

an
d

ga
in

s

R
ol

l a
xi

s
fe

ed
ba

ck

ga
in

s

Ya
w

 a
xi

s
fe

ed
ba

ck

ga
in

s

Ya
w

 a
xi

s
co

m
m

an
d

ga
in

s

R
ol

l a
xi

s
fil

te
ri

ng
R

ol
l s

ur
fa

ce

m
an

ag
em

en
t

La
te

ra
l

st
ic

k

R
ud

de
r

pe
da

l

R
ol

l
ra

te

Ya
w

ra

te

Si
de

sl
ip

 ra
te

fil

te
ri

ng

La
te

ra
l

ac
ce

le
ra

tio
n

Si
de

sl
ip

ra

te

Ya
w

 a
xi

s
fil

te
ri

ng
Ya

w
 s

ur
fa

ce

m
an

ag
em

en
tD

iff
er

en
tia

l
st

ab
ila

to
r,

de

g Ai
le

ro
n,

de

g

D
iff

er
en

tia
l

tr
ai

lin
g-

ed
ge

 fl
ap

s,

de
g R

ud
de

r

Ya
w

ve

ct
or

in
g

co
m

m
an

d,

de
g

92
06

20

Fi
g.

 3
 S

im
pl

ifi
ed

 r
es

ea
rc

h
fli

gh
t c

on
tr

ol
 s

ys
te

m
 la

te
ra

l—
di

re
ct

io
na

l c
on

tr
ol

 la
w

s.
11

Fig. 4 Simplified thrust mixer.

Fig. 5 The research flight control system software functional areas.

Left

Right

Total

Pitch and yaw
vectoring

commands
from claws

Scaled
commands

Nozzle
radius

Nozzle
pressure

ratio

Estimated
thrust

Left engine
Top
Outboard
Inboard

Right engine
Top
Outboard
Inboard

Thrust reference
Thrust estimate

920621

• Left and right assignment
• Command limiting
• Vane pair selection
• Inactive vane calculation
• Load limiting

920622

DPRAM

Engage-
disengage

logic

Input-
output

Longitudinal
control

laws

Lateral–
directional

control
laws

Thrust
estimator

Thrust
vane
mixer
12

Fig. 6 The High Alpha Research Vehicle all-software simulation.

Fig. 7 The High Alpha Research Vehicle hardware-in-the-loop simulation.

UMN

Simulation
computer

• Aerodynamic model
• Basic control laws
• Propulsion model
• Actuator models
• Sensor models

RFCS
control

law
computer

Analog and discrete
input-output

MIL-STD-1553 data buses

HUD

Cockpit

Mission
computers

1 or 2

DDIDDI

920623

Analog and discrete
input-output

MIL-STD-1553 multiplex buses

HUD

Cockpit

Mission
computers

1 or 2

DDIDDI

920624

MIL-STD-1553
multiplex bus

Flight
control

computer
console

Actuator
models

GE 701E DPRAM RFCS

Flight control computers

Actuator commands
and positions

Analog and
discrete input-output

Analog
and

discrete
input-
output

Activator
positions

Simulation
computer

• Aerodynamic model
• Propulsion model
• Sensor models
13

Fig. 8 The High Alpha Research Vehicle ironbird simulation.

Simulation
computer

Analog and discrete
input-output

MIL-STD-1553 multiplex buses

HUD

Cockpit

Mission
computers

1 or 2

DDIDDI

920625

Flight
control

computer
console

LEF and TEF
actuator
models

GE 701E DPRAM RFCS

Flight control computers

Actuator
commands

and positions

Analog and
discrete

input-output

Analog and
discrete

input-output
TEF and LEF
commands

and positions

Actuator
positions

TEF and LEF
positions

Actuator
commands

and positions

• Aerodynamic model
• Propulsion model
• Sensor models
14

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

.

Experience With Ada on the F-18 High Alpha Research Vehicle Flight
Test Program

WU-533-02-35

Victoria A. Regenie, Michael Earls, Jeanette Le, and Michael Thomson

NASA Dryden Flight Research Facility
P.O. Box 273
Edwards, California 93523-0273

H-1860

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TM-104259

Considerable experience has been acquired with Ada at the NASA Dryden Flight Research Facility during the
on-going High Alpha Technology Program. In this program, an F-18 aircraft has been highly modified by the
addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original
quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight
control computer was incorporated in each of the four channels. Software for the research flight control
computer was written in Ada. To date, six releases of this software have been flown. This paper provides a
detailed description of the modifications to the research flight control system. Efficient ground-testing of the
software was accomplished by using simulations that used the Ada for portions of their software. These
simulations are also described. Modifying and transferring the Ada flight software to the software simulation
configuration has allowed evaluation of this language. This paper also discusses such significant issues in
using Ada as portability, modifiability, and testability as well as documentation requirements.

Ada; Airborne computers; Digital systems; F-18 High Alpha Research Vehicle;
Flight control

AO3

18

Unclassified Unclassified Unclassified Unlimited

October 1992 Technical Memorandum

Available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road,
Linthicum Heights, MD 21090; (301)621-0390

Michael Thomson is affiliated with PRC Inc., Edwards, California. This report was also presented at the
IEEE/AIAA Digital Avionics Systems Conference, October 5–8, 1992, Seattle, Washington

Unclassified—Unlimited
Subject Category 05

	Cover Page
	Title Page
	Abstract
	Nomenclature
	Introduction
	Research Flight Control System Description
	Hardware
	Control Laws
	Software

	Simulations
	All-Software Simulation
	Hardware-in-the-Loop Simulation
	Ironbird Simulation

	Compilers
	Software Modifications
	Flight Software Modifications
	Simulation Software Modifications

	Significant Issues
	Portability
	Documentability
	Modifiability
	Testability
	Verification
	Validation

	Software Development

	Concluding Remarks
	References
	Figures
	Report Documentation Page

